It looks like a simple task – connect the Raspberry Pi with an external ADAU1701 DSP chip. Both features an I2S interface – just connect it. However, it is not that easy. The ADAU1701 can only work as a slave device on the I2S input. Why not just using the Raspberry Pi as the master? This also won’t work, because the Raspberry Pi can create the BCLK and LRCLK signal, but not a 256xFs master clock signal that is needed by the ADAU1701. Using a local master clock on the ADAU1701 and the I2S clock from the Raspberry Pi will also not work, because both clocks have to be synchronous. Looks like a bit more complexity is needed.
We use the following setup: An external frequency generator creates the 12.288 MHz master clock and a synchronous 3.072 MHz BCLK signal. This BCLK signal will be the master clock for the I2S output of the Raspberry Pi. From this clock signal, the Raspberry Pi creates the 48 kHz LRCLK signal. Why are we not creating this clock externally? Because we have only a 2 channel signal generator available in the lab. This needs some tweaking in the sound card driver.
The ingredients of this test setup are
- Rigol DG4062 signal generator
- Raspberry Pi
- MiniDSP (our own DSP board is not ready yet)
- Lab power supply
For measurements I use a Rigol DS2072 DSO and a Intronix Logicport Logic analyzer. That’s a lot of equipment to connect two simple devices:

I had serious trouble to get this setup running. The reason for this was a simple mistake: I switched BCLK and LRCLK. But during debugging I had another idea. The output of the ADAU1701 is an I2S master. That means it can be used also as the master clock for the input. With this setup – output BCLK and LRCLK connected to input BCLK and LRCLK, there is no need for an external clock source. The ADAU1701 can create all the necessary clocks with the onboard resonator. This will simplify our DSP project a lot.
Finally when everything worked, it looked like this on the oscilloscope: a nice analog output from the ADAU1701.
